欧美一级淫片,亚洲一区资源,外国成人直播,在线精品国产亚洲

奧數網
全國站
您現在的位置:奧數 > 小學數學網 > 數學文化 > 正文

三十六軍官問題

來源:數學資源庫 2008-02-14 10:14:42

智能內容


  大數學家歐拉曾提出一個問題:即從不同的6個軍團各選6種不同軍階的6名軍官共36人,排成一個6行6列的方隊,使得各行各列的6名軍官恰好來自不同的軍團而且軍階各不相同,應如何排這個方隊?如果用(1,1)表示來自第一個軍團具有第一種軍階的軍官,用(1,2)表示來自第一個軍團具有第二種軍階的軍官,用(6,6)表示來自第六個軍團具有第六種軍階的軍官,則歐拉的問題就是如何將這36個數對排成方陣,使得每行每列的數無論從第一個數看還是從第二個數看,都恰好是由1、2、3、4、5、6組成。歷史上稱這個問題為三十六軍官問題。

  三十六軍官問題提出后,很長一段時間沒有得到解決,直到20世紀初才被證明這樣的方隊是排不起來的。盡管很容易將三十六軍官問題中的軍團數和軍階數推廣到一般的n的情況,而相應的滿足條件的方隊被稱為n階歐拉方。歐拉曾猜測:對任何非負整數t,n=4t+2階歐拉方都不存在。t=1時,這就是三十六軍官問題,而t=2時,n=10,數學家們構造出了10階歐拉方,這說明歐拉猜想不對。但到1960年,數學家們徹底解決了這個問題,證明了n=4t+2(t≥2)階歐拉方都是存在的。

廣告合作請加微信:17310823356

京ICP備09042963號-15 京公網安備:11010802027854

違法和不良信息舉報電話:010-56762110 舉報郵箱:wzjubao@tal.com

奧數版權所有Copyright2005-2021 m.buaa3.com. All Rights Reserved.

主站蜘蛛池模板: 昌乐县| 常熟市| 天柱县| 达尔| 西藏| 衡东县| 正安县| 监利县| 长汀县| 深州市| 铁岭市| 嘉定区| 江陵县| 澄迈县| 介休市| 洪湖市| 西充县| 西华县| 岳西县| 宣恩县| 赤城县| 当涂县| 双城市| 黄大仙区| 浏阳市| 宽城| 冕宁县| 晋江市| 襄城县| 湄潭县| 堆龙德庆县| 东台市| 讷河市| 克山县| 分宜县| 乌恰县| 陆丰市| 拉萨市| 贵德县| 长子县| 辉南县|