例8 甲、乙兩人進行下面的游戲.
兩人先約定一個整數N.然后,由甲開始,輪流把0,1,2,3,4,5,6,7,8,9十個數字之一填入下面任一個方格中
每一方格只填一個數字,六個方格都填上數字(數字可重復)后,就形成一個六位數.如果這個六位數能被N整除,就算乙勝;如果這個六位數不能被N整除,就算甲勝.
如果N小于15,當N取哪幾個數時,乙能取勝?
解:N取偶數,甲可以在最右邊方格里填一個奇數(六位數的個位),就使六位數不能被N整除,乙不能獲勝.N=5,甲可以在六位數的個位,填一個不是0或5的數,甲就獲勝.
上面已經列出乙不能獲勝的N的取值.
如果N=1,很明顯乙必獲勝.
如果N=3或9,那么乙在填最后一個數時,總是能把六個數字之和,湊成3的整數倍或9的整數倍.因此,乙必能獲勝.
考慮N=7,11,13是本題最困難的情況.注意到1001=7×11×13,乙就有一種必勝的辦法.我們從左往右數這六個格子,把第一與第四,第二與第五,第三與第六配對,甲在一對格子的一格上填某一個數字后,乙就在這一對格子的另一格上填同樣的數字,這就保證所填成的六位數能被1001整除.根據前面講到的性質2,這個六位數,能被7,11或13整除,乙就能獲勝.
綜合起來,使乙能獲勝的N是1,3,7,9,11,13.
記住,1001=7×11×13,在數學競賽或者做智力測驗題時,常常是有用的.
二、分解質因數
一個整數,它的約數只有1和它本身,就稱為質數(也叫素數).例如,2,5,7,101,….一個整數除1和它本身外,還有其他約數,就稱為合數.例如,4,12,99,501,….1不是質數,也不是合數.也可以換一種說法,恰好只有兩個約數的整數是質數,至少有3個約數的整數是合數,1只有一個約數,也就是它本身.
質數中只有一個偶數,就是2,其他質數都是奇數.但是奇數不一定是質數,例如,15,33,….
例9 ○+(□+△)=209.
在○、□、△中各填一個質數,使上面算式成立.
解:209可以寫成兩個質數的乘積,即
209=11×19.
不論○中填11或19,□+△一定是奇數,那么□與△是一個奇數一個偶數,偶質數只有2,不妨假定△內填2.當○填19,□要填9,9不是質數,因此○填11,而□填17.
這個算式是 11×(17+2)=209,
11×(2+17)= 209.
解例9的首要一步是把209分解成兩個質數的乘積.把一個整數分解成若干個整數的乘積,特別是一些質數的乘積,是解決整數問題的一種常用方法,這也是這一節所講述的主要內容.
一個整數的因數中,為質數的因數叫做這個整數的質因數,例如,2,3,7,都是42的質因數,6,14也是42的因數,但不是質因數.
任何一個合數,如果不考慮因數的順序,都可以唯一地表示成質因數乘積的形式,例如
360=2×2×2×3×3×5.
還可以寫成360=23×32×5.
這里23表示3個2相乘,32表示2個3相乘.在23中,3稱為2的指數,讀作2的3次方,在32中,2稱為3的指數,讀作3的2次方.