如何培養學生的解題能力(二)
來源:數學專業網 2008-02-01 10:37:33

二、多向探索,培養解題的靈活性
求異思維是一種創造性思維。它要求學生憑借自己的知識水平能力,對某一問題從不同的角度,不同的方位去思考,創造性地解決問題。而小學生的思維是以具體形象思維為主,容易產生消極的思維定勢,造成一些機械思維模式,干擾解題的準確性和靈活性。有的學生常常將題中的兩個數據隨意連接,而忽視其邏輯意義。如“小方和小圓各有同樣多的水果糖,小方吃了5粒,小圓吃了6粒,剩下的誰多?”由于受數值大小這一表象的干擾,學生的思維定勢集中在“6>5”上,容易誤判斷為“小圓剩下的多”。為了排除學生類似的消極思維定勢的干擾,在解題中,要努力創造條件,引導學生從各個角度去分析思考問題,發展學生的求異思維,使其創造性地解決問題。通常運用的方法有“一題多問”、“一題多解”和“一題多變”。
1.一題多問。
同一道題,同樣的條件,從不同的角度出發,可以提出不同的問題。如解答“五一班有學生45人。女生占4/9,女生有多少人?”這本來是一道很簡單的題目。教學中,老師往往會因學生很容易解答,而一晃而過,忽視發散思維的訓練。對于這樣的題型,老師要執意求新,變換提出新的問題。如再提出如下問題:(1)男生有多少人?(2)全班有多少人?(3)男生比女生多多少人?(4)男生是女生的幾倍?(5)女生是男生的幾分之幾?等等。這樣,可以起到“以一當十”的教學效果。像同一道題,老師還可以從分析上多提問,從解法上多提問,從檢驗上多提問,進行多問啟思訓練,培養學習思維的靈活性。
2.一題多解。
在解題時,要經常注意引導學生從不同的方面,探求解題途徑,以求最佳解法。
例如“某村計劃修一條長150米的路,前3天完成了計劃的20%,照這樣計算,完成這條路還需多少天?”首先老師要學生用多種方法解。在學生沒有學習工程問題時,解法一般集中在以下三種上:①(150-150×20%)÷(150×20%÷3)=12(天);②150÷(150×20%÷3)-3=12(天);③150×(1-20%)÷(150×20%÷3)=12(天)。
針對這些解法,老師要善于引導學生比較三種方法的異同點,總結出“三種方法中都運用了全程150米”這一條件的共性。針對這一共性,老師可打破思維定勢,啟迪學生的新思維:“假如把150米當作一條路(用1來表示),還可以怎樣解答?”這一點撥,學生很容易發現如下解法:④3×[(1-20%)÷20%]=12(天);⑤1÷(20%÷3)-3=12(天);⑥3÷20%-3=12(天)。
綜上六種解法,顯然后三種解法(尤其是解法⑥),列式簡潔,想象豐富,充分可以顯示學生思維的靈活性。
3.一題多變。
小學生解題時,往往受解題動機的影響,因局部感知而干擾整體的認識。例如:“某商廈共有6層,每兩層間的板梯長5米,從1樓到6樓共要走多少米?”往往由于“每兩層5米”和“6層”與學生的解題動機發生共鳴,忽視了“6層只有5段間距”這一特點,而容易得出“5×6”的錯解。要消除類似的干擾,就必須進行一些一題多變的訓練。
針對解題模式的干擾進行變題訓練。如學生學習了工程問題后,求合做工作時間,容易形成這樣一種解題模式“1÷(1/A+1/B)”。我們可將條件中的時間改變成分數形式。如“一項工作,甲獨做1/2小時完成,乙獨做1/4小時完成,如兩人合做要多少小時完成?”如老師不提醒,學生絕大多數會把“1/2小時”和“1/4小時”當作工效,仍然列出算式“1÷(1/2+1/4)”來解答(實踐統計,第1次這樣的錯誤率在75%以上)。又如學生學過等分除法應用題后,往往見“分成幾份”就“用除法計算”。在學生掌握等份除法計算方法后,也要注意變題訓練。如設計類似題“6粒水果糖分成3份,最少的1份是多少粒?”可淡化消極的“6÷3”思維定勢的干擾。因為“6÷3”計算錯了,其實最少的1份是1粒(題中并沒有要求平均分)。
通常,教學中的變條件、變問題、條件和問題的互換等,都是一題多變的好形式,但是,變題訓練要掌握一個原則,就是要在學生較牢固的掌握法則、公式的基礎上,進行變題形練。否則,將淡化思維定勢的積極作用,不利于學生牢固地掌握知識。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數英三科試題匯總
- 小學1-6年級數學天天練
- 小學1-6年級奧數類型例題講解整理匯總
- 小學1-6年級奧數練習題整理匯總
- 小學1-6年級奧數知識點匯總
- 小學1-6年級語數英教案匯總
- 小學語數英試題資料大全
- 小學1-6年級語數英期末試題整理匯總
- 小學1-6年級語數英期中試題整理匯總
- 小學1-6年語數英單元試題整理匯總