奧數 > 小學資源庫 > 教案 > 小學數學教案 > 五年級數學上冊教案 > 正文
2016-11-17 14:06:21 下載試卷 標簽:北師大版 數學教案
預設
第一組:用3根小棒擺:2、12、102,都分別是3的倍數。
第二組:用4根小棒擺:22、1111、1102,都不是3的倍數。
第三族,用6根小棒擺:都是3的倍數。
問題:你發現了什么?
生:我們發現了3根、6根小棒擺出來的數都是3的倍數。
師評價:關鍵要看小棒的根數,了不起的發現。
生:只要小棒的根數是3的倍數,這個數就是3的倍數。
師:你們認為除了3根、6根,還有其它情況是嗎?具體解釋一下。
生: 9根、12根、15根……都行——
(5)真的是這么回事嗎?以9為例擺擺看。
師:來,說說你們小組擺出了哪個數,它是不是3的倍數?
生:我用9根小棒擺出了36,36是3的倍數。
師:哪個小組還想出三位數、四位數或是更大的數?
生:我用9根小棒擺出了216,216是3的倍數。
生:我用9根小棒擺出了3015,3015是3的倍數。
師:說得完嗎?
生:說不完。
師:大家用九根小棒擺出來的數都是3的倍數嗎?那你認為他們小組的結論合理嗎?
生:很合理。
師:大家說著,我把它記錄下來(板書):只要小棒的根數是3的倍數,擺出來的數就是3的倍數。
師:由擺數所用小棒的根數我們就能快速判斷出一個數是不是3的倍數。
3、總結提升
師:通過擺小棒,我們能判斷出一個數是不是3的倍數,現在不擺了,也不撥了,通過上面的兩次操作,能不能說說什么樣的數是3的倍數?
師:小組內交流一下。
小組活動。
師:誰來說說?
生1:各個數位上的數加起來是3的倍數,這個數就是3的倍數。
生2:各個數位上數的和是3的倍數,這個數就是3的倍數。
生3:只要各個數位上數的和是3的倍數,這個數就是3的倍數。
師:無論是小棒的根數還是各個數位上珠子的顆數,實際上也就是各個數位上數的和。只要各個數位上數的和是3的倍數,這個數就是3的倍數。
4、探究原因,區別理解
(1)要想判斷一個數是否是2或者5的倍數,只需要看這個數個位上的數。可是,為什么只需要觀察個位上的數呢?為什么其他位上的數就不用觀察呢?
研究16
師:上節課我們講過,16是2的倍數,它是由一個十和六個一組成的,那么想想把一個十,兩個兩個的分,會出現什么結果?(也就是說如果把16兩個兩個地分,正好可以分完,沒有余數)
但既然十位上沒有剩余,那十位上的數還需要觀察嗎?(我們只需要觀察個位上的6根小棒就可以,把它兩個兩個地分能正好分完)
用剛才的方法判斷5的倍數為什么也只觀察個位?(因為一個百被5分完沒有余數)
看來判斷2、5不受百位和十位的影響,只需要觀察個位上的數就可以。
通過剛才地研究,我們更加熟練了判斷2、5倍數的方法,還知道了為什么只需要觀察個位上的數就可以了。
(2)問:為什么3的倍數特征要看各個數位相加的和呢?
舉例24是不是3的倍數,但是個位4是嗎?這是為什么?自己分一分,畫一畫,看看24為什么是3的倍數?
一個十3個3個分余1根,第二個余1根,兩個各余1根,在和個位繼續分,
138分一分,試一試,看看是不是3的倍數
一個百3個3個分最后剩1根,三個十3個3個分,每個余1根,所以剩三個一,個位傻上還剩一個8,合起來繼續分,12個繼續分。
(2)總結:梳理一下:24、138,分一遍,你發現什么?(剩余就是3的倍數。數位是幾,余數就是幾)無論百位上是幾,3個3個分完,就剩幾。
P:剩余的小棒正好是每個數位加起來的數。(因為這些數位和剩下的數相同,所以可以直接把數位上的數相加,如果和是3的倍數,那么這個數就是3的倍數,如果不是,就不是3的倍數。)
三、【鞏固拓展,形成能力】(10分鐘)
(一)鞏固訓練,夯實基礎
1、口頭練習:是不是3的倍數都有這個規律呢?隨便寫一個數:先用除法算算是不是3的倍數,再算一算各個數位上的和是不是3的倍數?
把一個數各個數位上的數相加是3的倍數……
2、圈出下面是3的倍數的數:42、78、111、165、655、5988
3、□2,這是一個兩位數,十位被遮蓋住了,如果它是3的倍數,猜一猜,這個數可能是幾?為什么?
(預設:生1:1。
師:可以嗎?還有其他答案嗎?
生2:1,4,7都可以。
師:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍數,所以填1、4、7都可以。
師:恭喜你,三種可能都被你們猜中了!
師:如果它既是2的倍數,又是3的倍數呢?
生:24。
師:為什么只有24可以呢?
生:因為只有24既是2的倍數,又是3的倍數。)
(二)拓展訓練,靈活創新
以前我們用除法來檢驗這個數是不是3的倍數,今天我們又學了3的倍數特征,我們只需要求各個數位上的和是3的倍數就可以,但是如果遇到這樣的題怎么辦?(PPT)
13689362754、123456789
老師:如果用各個數位之和是3的倍數,比較麻煩。
但是我們用劃掉3的倍數的方法求,這樣即便是很復雜的數也能特別輕易的解決。比如:13689362754,從左開始,1不夠,看13,是3的4倍,余1,和6組成16余1,18算完……
后面的練習我們下課完成,好,這節課不僅發現3的特征,還根據特點發現簡便地判斷方法,更可貴的發現了背后的道理。學習數學就是這樣,不僅要知其然還要知其所以然。希望同學們能在快樂的數學海洋里繼續愉快地暢游。這節課我們就上到這里,下課。
教師巡視,個別輔導。
(二)同伴討論,互助共進
完成學案中“同伴合作,互助共進”內容。
重點交流學生所舉的例子。
教師巡視,個別輔導。
【設計意圖】這一環節由學生自學和同伴合作,完成因數倍數的知識的學習。
四、【師生共學,交流分享】(5分鐘)
(一)小組展示,彰顯風采
指名小組進行匯報。
(二)師生完善,共同提高
1、學生糾正、補充、質疑
2、教師精講、點撥、評價
在學生討論比較充分的基礎上,教師進行點撥來完善學生對比的認識。
【設計意圖】通過教師的點撥完善學生對比的認識。
五、【鞏固拓展,形成能力】(10分鐘)
(一)鞏固訓練,夯實基礎
先由學生自主完成學案中相應的內容,再同桌交流,完善答案。
1、是不是3的倍數都有這個規律呢?隨便寫一個數:先用除法算算是不是是不是3的倍數,再算一算各個數位上的和是不是3的倍數?
把一個數各個數位上的數相加是3的倍數……
2、看一看哪些是3的倍數:42、78、111、165、655、5988
原來判斷是用除法,現在用加法。改革了
3、不用計算,能快速算出來那個式子有余數嗎?
802、3;342、3
4、下面的數是3的倍數嗎?888、555,那這樣的三位數都是三的倍數嗎?P:777、888,可以想成3個8相乘,像這樣的三位數一定是3的倍數
5、下面都是嗎?789、345、654
都是,有什么特點?相鄰、連續三個自然數。
是不是所有都是呢?舉例:123.為什么呢?
654,把大的給小的,把6給4,三個都是5了,把較大數給叫小叔一個,數字和不變,所以一定是3的倍數。
6、是嗎?363、669、993。是。有簡便的方法嗎?每個數學都是3的倍數,這個數字和一定是3的倍數。
歡迎掃描二維碼
關注奧數網微信
ID:aoshu_2003
歡迎掃描二維碼
關注中考網微信
ID:zhongkao_com