四年級奧數專題之最大積的排列問題
在數學競賽中,我們經常會遇到把若干個數字排列成幾個數相乘,使得乘積最大的問題。如何排列呢?我們知道:在周長一定的情況下,長方形的長與寬越接近,所得長方形的面積就越大(以下簡稱“接近原則”)。根據這一規律就可以順利解決此類問題。
一、常規類型
例1用3、4、5、6、7、8六個數字組成兩個三位數,使這兩個三位數的乘積最大,應怎樣排列?
【分析與解】因為8>7,6>5→85、76最接近,又4>3→853、764最接近,可知853×764所得乘積最大。
例2用0,1,2,3,4,5,6,7,8,9十個數字組成兩個五位數,使得這兩個五位數的乘積最大,應怎樣排列?
【分析與解】因為9>8,7>6→96、87最接近,又5>4→964、875最接近,又3>2→9642、8753最接近,又1>0→96420、87531最接近,96420×87531乘積最大。
例3用53、64、78、82四張數字卡片,組成兩個四位數,如何排乘積才能最大?
【分析與解】因為82>78,64>53,根據“接近原則”,應這樣搭配→8253、7864,所以8253×7864乘積最大。
二、變式類型
例4用2,7,3,8四個數字排一個三位數和一個一位數,乘積最大的式子是什么?
【分析與解】根據“接近原則”。8>7,“一位數”盡可能大才能接近“三位數”,因此,8就是要求的一位數,三位數是732,即732×8乘積最大。
例52,3,4,5,6五個數字組成一個兩位數和一個三位數,使得它們的乘積最大?
【分析與解】因為6>5,4>3→63、54最接近,根據接近原則,兩位數應該盡量大,故取63為兩位數,即63×542乘積最大。
例6用3,4,5,6,7,8六個數字排成三個兩位數相乘,要求它們的乘積最大。應該怎樣排列?
【分析與解】十位數字分別是8、7、6,8>7>6,個位數字分別是5,4,3,5>4>3,依據“接近原則”,大小搭配可得83×74×65,三個數最接近因而它們的乘積最大。
綜上數例,可以歸納出這樣的規律:較大數后配較小的數,較小的數后配較大的數,這樣才能使數之間更為接近,從而保證乘積最大。簡單地說就是:數越接近,乘積越大。
如果把上面所有問題中的“最大”改為“最小”,又該怎樣排列呢?容易推知:較大數后配較大數,較小數后配較小數,相差越大,其積越小。簡單地說就是:數越懸殊,乘積越小。
以上規律均可用代數方法予以證明,這里不再贅述。
【練一練】
1、用4、5、6、7、8、9六個數字組成兩個三位數,如何排,才能它們的乘積最大?
2、用2、3、6、9組成兩個兩位數,使它們的乘積最小,怎樣排?
3、用3,4,5,7,9組成一個二位數和一個三位數,使它們的乘積最大,應該怎樣排?
4、已知:甲=11×19,乙=12×18,丙=13×17。甲、乙、丙三個數中誰最大?誰最小?
5、已知:A=123456789×987654321,B=123456788×987654322不計算比較A、B的大小。